NMR Study of C- and N-Trimethylsilylazole Derivatives

Lyudmila I. Larina,* Mikhail S. Sorokin, Aleksandr I. Albanov, Valentina N. Elokhina, Nadezhda I. Protsuk and Valentin A. Lopyrev

Irkutsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia

Received 11 June 1997; revised 21 August 1997; accepted 22 August 1997

ABSTRACT: C- and N-trimethylsilylazole derivatives were studied by 1 H, 13 C and 29 Si NMR spectroscopy. Degenerated prototropic tautomerism of 4-trimethylsilylpyrazole in methanol and the silylotropy of 1-trimethylsilyl-4-methylpyrazole in a neat liquid were investigated for the first time. 3- and 5-tautomers of 3(5)-methylpyrazole in a ratio of 54:46 were found in methanol by use 13 C NMR spectroscopy ($T_c = 230$ K, $\Delta G_c^{\ \neq} = 10$ kcal mol $^{-1}$). © 1998 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; ²⁹Si NMR; trimethylsilylazoles; tautomerism; silylotropy

INTRODUCTION

Recently we have carried out a dynamic NMR investigation of the silvlotropy of some N-trimethylsilvl pyrazole derivatives and found the phenomenon of the catalyzed 1,2-migration of the trimethylsilyl group in 4substituted 1-trimethylsilylpyrazoles.^{1,2} At present there are few published data on the 1H NMR spectra of Ctrimethylsilyl derivatives of azoles such as 3(5)-trimethylsilylpyrazoles, 4-trimethylsilylpyrazoles, 3 (5),4bis(trimethylsilyl)pyrazoles⁴ and 4-nitro-5-trimethylsilylpyrazoles and 4-nitro-5-trimethylsilyl-1,2,3triazoles.⁵ In the case of N-trimethylsilylpyrazoles, the silylotropic rearrangement (1,2-exchange) of the trimethylsilyl group in 1-trimethylsilylpyrazole⁶ and its 3,5-dimethyl- 6,7 and 3,4,5-trimethyl derivatives 6 has been studied. Syntheses of some C- and Ntrimethylsilylazole derivatives have been described.^{8–10}

RESULTS AND DISCUSSION

Continuing our research on silylated azoles, in this work we synthesized and examined by 1 H, 13 C and 29 Si NMR spectroscopy some C- and N-trimethylsilylpyrazole derivatives (1–9), model analogs (10 and 11) (Table 1) and N-trimethylsilyl-1,2,3-triazoles (12 and 13) (Table 2).

As can be seen from Table 1 in C- and N-trimethylsilylated pyrazoles and their bis- and tris(trimethylsilyl) analogs the resonance of the C-trimethylsilyl group protons varies in the range 0.21–0.39 ppm whereas that of the N-trimethylsilyl group protons varies from 0.43 to 0.46 ppm. On introduction of the Me₃Si group into the pyrazole ring, the chemical shift of ring protons does not change much and is

E-mail: larina@irioch.irk.ru

almost independent of the position of the Me_3Si group in the ring. The $\delta^{29}Si$ value for C-trimethylsilyl groups is observed in the range -9.3 to -11.0 ppm, whereas that of N-trimethylsilyl group occurs in the range 14-15 ppm. It should be noted that the ^{29}Si chemical shift of the trimethylsilyl group in the pyrazole ring position 3(5) of compound 2 does not differ much from that in the Me_3Si group in position 4 (compound 1). At the same time, in compounds 3, 4 and 5 the ^{29}Si chemical shifts of trimethylsilyl groups in positions 3 and 4 are 1 ppm different (see Table 1).

Pyrazole provides a convenient system for studying annular tautomerism and, therefore, the phenomenon of proton 1,2-migration in pyrazoles has been studied, in particular, by NMR spectroscopy. Prototropic exchange processes in azoles are too fast on the NMR time-scale, so the technical difficulties encountered can be overcome by using solvents which allow prototropy to be followed at moderately low temperatures (e.g. methanol) or even at room temperature (HMPA¹⁶). Taking into account the solvation properties of the latter, we did not use it in our research and chose methanol. We could observe degenerated prototropic tautomerism [Eqn (1)] of 4-trimethylsilylpyrazole (1), not investigated previously.

At room temperature there is only one resonance signal (7.57 ppm, CD_3OD) for the two protons in positions 3 and 5 of the pyrazole ring in 1 in the proton spectrum because of the fast proton migration between two nitrogen atoms (Table 1). On cooling the signal is progressively broadened and at $-90\,^{\circ}C$ two well resolved signals are observed (7.70 and 7.56 ppm with regard to the nuclei H-3 and H-5, respectively). These signals coalesce at $-44\,^{\circ}C$. Then, at room temperature, there is

^{*} Correspondence to: L. I. Larina, Irkutsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.

Table 1. ¹H, ¹³C and ²⁹Si NMR chemical shifts of C- and N-trimethylsilyl derivatives of pyrazole and some model analogs

				$\delta^1 \mathrm{H}$ (p	opm)			δ	¹³ C (ppm)			
No.	Compound	H-3	H-4	H-5	Si(CH ₃) ₃	NH	C-3	C-4	C-5	Si(CH ₃) ₃	$\delta^{29} { m Si}~{ m (ppm)}$	Solvent
1ª	MeSi N H	7.58 7.57 7.70 7.50 ^b		7.58 7.57 7.56 7.50 ^b	0.21 0.21 0.21 0.22 ^b	12.97 14.78 ^b	138.23	113.58	138.23	-0.22	-10.35	CDCl ₃ CD ₃ OD CD ₃ OD (-90 °C)
2	SiMe ₃		6.40, 6.37 ^b	7.64 7.62 ^b	0.28 0.30 ^b	12.99 13.78 ^b	142.39	112.09	138.49	-1.06	-10.1	CDCl ₃
3	Me ₃ Si SiMo	₹3		7.66 7.60°	0.27, 0.39 0.30°, 0.35°	10.88 12.60°	146.39	120.09	145.38	0.95, -0.15	-9.3, -10.3	CDCl ₃
4	SiMe ₃ N SiMe ₃		6.40	7.58	0.26, 0.44 C-Si, N-Si		156.76	112.22	133.55	-0.48, -0.80 C-Si, N-Si	-9.3, 13.92 C-Si, N-Si	CDCl ₃
5	Me ₃ Si N N SiMe ₃	7.73 7.63		7.55 7.60	0.21, 0.46 0.17, 0.37 C-Si, N-Si		147.59 148.01	114.88 115.04	138.55 139.04	-0.28, -0.87 -0.06, 0.72 C-Si, N-Si	-10.7, 14.5 -11.1, 13.4 C-Si, N-Si	CDCl ₃ Neat liquid
6	Me ₃ Si SiM	1 e		7.56	0.25, 0.31, 0.43		160.60	120.80	140.44	1.08, 0.30, -0.35	-11.0, 13.6 -8.2, C-Si, N-Si	CDCl ₃

Table 1. Continued

				$\delta^1 \mathrm{H}$ (p)	pm)		$\delta^{13}\mathrm{C}\ (\mathrm{ppm})$					
No.	Compound	H-3	H-4	H-5	Si(CH ₃) ₃	NH	C-3	C-4	C-5	Si(CH ₃) ₃	δ^{29} Si (ppm)	Solvent
7 ^d	H ₃ C N	7.53		7.39	0.40		144.82	116.86	132.86	-0.26	13.1	Neat liquid
8 e	SiMe ₃ CH ₃		6.00	7.40	0.33		151.78	106.32	134.29	-0.85	12.9	Neat liquid
9 ^f	SiMe ₃	7.73	6.28	7.56	0.44		142.85	106.71	133.29	-1.19	14.6	Neat liquid
10 ^g	SiMe ₃		6.00	7.41			144.90	105.49	135.86			CD ₃ OD
11 ^h	H H3C N H	7.32 7.37		7.32 7.37		11.53	133.09 134.09	114.95 116.34	133.09 134.09			CDCl ₃ CD ₃ OD

^a ΔG_c^{\neq} = 11.9 kcal mol⁻¹ (1 kcal = 4.184 kJ) (T_c = 229 K, Δv = 8.5 Hz, CD₃OD). ^b In CCl₄.³
^c In CCl₄.⁴
^d ΔG_c^{\neq} = 22.8 kcal mol⁻¹ (T_c = 433 K, Δv = 12.5 Hz), δ^1 H(CH₃) = 2.08 ppm. ^c δ^1 H(CH₃) = 2.21 ppm; ^f In CDCl₃.

In CDC1₃.

^g δ^{1} H(CH₃) = 2.23 ppm, δ^{13} C(CH₃) = 12.17 ppm.

^h In CDCl₃, δ^{1} H(CH₃) = 2.04 ppm, δ^{13} C(CH₃) = 8.50 ppm in CD₃OD, δ^{1} H(CH₃) = 2.04 ppm, δ^{13} C(CH₃) = 8.65 ppm.

 δ^{13} C (ppm) $\delta^1 H \text{ (ppm)}$ Si(CH₃)₃ δ^{29} Si (ppm) No. Compound H-4 H-5 Si(CH₃)₃ C-4 C-5 12 7.92 7.92 0.58 132.70 126.59 -1.1020.2 7.07 6.98 0.25 13 7.82 7.82 0.58 135.65 135.62 -1.3222.0 7.40 7.40 0.21

Table 2. ¹H, ¹³C and ²⁹Si NMR chemical shifts of N-trimethylsilyl-1,2-3-triazoles

one signal again. Hence, this temperature transformation is indicative of the dynamic exchange process of the N-H proton between the two nitrogen atoms in 1. The exchange process barrier (ΔG_c^{\neq}) of the N-H proton in 4-trimethylsilylpyrazole (0.2 mol l⁻¹, CD₃OD) is 11.9 kcal mol (Table 1). Previously 15 the ΔG_c^{\neq} values for 4-chloro- and 4-nitro-3,5-dimethylpyrazole were determined as 12.8 and 12.1 kcal mol⁻¹ (CD₃OD), respectively. However, the concentrations at which ΔG_c^{\neq} values were determined were not reported.15 We found ΔG_c^{\dagger} to be greatly dependent on the pyrazole concentration (with increasing concentration ΔG_c^{\neq} diminishes and only in the 0.1-0.2 mol 1^{-1} range is it nearly constant). An analogous $\Delta G_{\rm c}^{\ \neq}$ dependence on azole concentration has also been observed earlier.¹⁷ Moreover, the influence of concentration to the kinetic parameters of proton exchange in azoles has been studied.18,19

Removal of the tautomeric process degeneration in symmetrical pyrazoles by introducing a methyl group, for example, into the pyrazole ring at position 3(5) makes it possible to fix two tautomeric forms, those of 3- and 5-methylpyrazole, in the NMR spectra. The well understood 3(5)-methylpyrazole tautomerism [Eqn (2)]^{11,16,20} nevertheless attracts much attention.

We found 3- and 5-tautomers of 3(5)-methylpyrazole in the ratio 54:46 by using 13 C NMR in methanol ($-43\,^{\circ}$ C). The quantitative tautomer ratio was determined from 1 H and 13 C NMR spectra by the NNE technique (with proton decoupling and without Overhauser effect) (Table 1). Nearly the same tautomer ratio was observed in HMPA (at $-17\,^{\circ}$ C). The tautomeric process barrier for 10 determined from the coalescence

(2)

of both ¹³C signals of the CH₃ groups and C-3 and C-5 carbons (of both tautomers) is 10 kcal mol⁻¹, which is 4 kcal mol⁻¹ lower than in HMPA [14 kcal mol⁻¹ (Ref. 16)]. Slowing of the exchange process in HMPA seems to be due to the strong solvation properties of the latter.

As far as 3(5)-trimethylsilylpyrazole (2) is concerned [Eqn (3)], a decrease in the temperature of its solution in CD_3OD to $-90\,^{\circ}C$ did not lead to NMR spectral changes. This seems to be indicative either of a very low prototropic exchange barrier in 2 or of the presence of only one tautomeric form, that of 3-trimethylsilylpyrazole. Quantum chemical calculations (AM1, MNDO) of the heats of formation of 2a and 2b show the 3-tautomer to be predominant in the gas phase (Table 3).

Analogous results were obtained for compounds 8 and 4. For comparison, the results of same calculation on 10 are presented in Table 3, the ratio of 3-tautomer to the 5-tautomer being approximately equal. Nevertheless it is known that both 3(5)-nitropyrazole^{11,21,22} and 3(5)-aminopyrazole²³ exist mainly as the 3-tautomer.

With increasing temperature, the Me₃Si group in N-trimethylsilylpyrazole derivatives is prone to reversible 1,2-migration.^{1,2,6,7} In this study we found silylotropy of 1-trimethylsilyl-4-methylpyrazole (7) in the neat liquid. The silylotropy barrier (22.8 kcal mol⁻¹) in equilibrium (4) is comparable to that for the 1-trimethylsilylpyrazole⁶ and 1-trimethylsilyl-3,5-dimethylpyrazole^{6,7} studied earlier under similar conditions.

A study of 1,4-bis(trimethylsilyl)pyrazole (5) [Eqn (5)] under the same conditions did not lead to the expected

(3)

Table 3. Calculated heats of formation (ΔH) of 3- and 5-tautomers of some pyrazoles

		ΔH (kca	ΔH (kcal mol ⁻¹)			
Compound	Method	3-Tautomer	5-Tautomer			
2	AM1	17.207	18.990			
	PM3	2.692	0.072			
	MNDO	-13.459	-11.718			
10	AM1	57.971	57.021			
	PM3	39.564	38.572			
	MNDO	34.023	34.019			
8	AM1	0.221	0.847			
	PM3	-22.840	-23.180			
	MNDO	-35.881	-32.801			
4	AM1	-40.237	-36.841			
	PM3	-59.417	-60.683			
	MNDO	-83.012	-72.119			

result, as we could not attain coalescence of the H-3 and H-5 proton signals ($T_c > 458$ K). A situation of this kind could be facilitated by the use of catalysts which diminish the silylotropy barrier as shown previously.² However, this problem is outside the scope of this work.

Opinions on N-trimethylsilyl-1,2,3-triazole reported in the literature are contradictory. Thus, for example, Birkofer and Wegner²⁴ suggested that the trimethylsilyl group in N-trimethylsilyl-1,2,3-triazole exchanges quickly between the N-1 and N-2 atoms. According to other data,²⁵ N-trimethylsilyl-1,2,3-triazole exists as 2-trimethylsilyl-1,2,3-triazole (2-tautomer). We performed the silylation of 1,2,3-triazole with hexamethyldisilazane [Eqn (6)] and found the N-silylated 1,2,3-triazole to exist as two isomers: 1-trimethylsilyl- (12) and 2-trimethylsilyl-1,2,3-triazole (13) in a 1:5 ratio, both in CDCl₃ solution and as the neat liquid (Table 2).

The tautomer ratio was determined from ¹³C NMR spectra by means of the NNE technique. The data on ¹H, ¹³C and ²⁹Si NMR spectra are presented in Table 2. These results are in agreement with *ab initio* calcu-

$$Me_{3}Si \longrightarrow Me_{3}Si \longrightarrow N-SiMe_{3}$$

$$SiMe_{3}$$

(5)

(6)

lations indicating that the 2H-tautomer of 1,2,3-triazole is preferred.²⁰

EXPERIMENTAL

Spectra

¹H, ¹³C and ²⁹Si NMR spectra were recorded on a JEOL FX 90 Q spectrometer at 89.55, 22.49 and 17.85 MHz, respectively. Chemical shifts (ppm) were measured relative to tetramethylsilane as an internal standard. The accuracy of chemical shift measurements was 0.01 ppm for ¹H, 0.02 ppm for ¹³C, and 0.1 ppm for ²⁹Si. Samples were analyzed as neat liquids or in CD₃OD or CDCl₃ solution. Coupled ¹³C NMR spectra were obtained by the gated decoupling method (NNE). The pulse sequence INEPT with refocusing pulses was utilized to obtain 29Si spectra. Temperatures were measured to within $0.5\,^{\circ}\text{C}$. ΔG_{c}^{\neq} values were calculated from an equation²⁶ using T_{c} (coalescence temperature) and Δv (the difference in chemical shifts of two sites at T_c) with an accuracy of 0.5 kcal mol⁻¹. Quantum chemical calculations on azoles were carried out by AM1, MNDO and PM3 methods with full optimization of geometry.²⁷

Compounds

Previously unknown N-trimethylsilyl-substituted pyrazoles (4-8) were prepared by silylation of the corresponding pyrazole derivatives hexamethyldisilazane. With slight excess of the latter and in the presence of catalyst (saccharin) the reaction was completed within 0.5-1 h to give the target Nsilylated pyrazoles (4-8) in virtually quantitative yields. The silylation of C-trimethylsilylpyrazoles with hexamethyldisilazane occurs as smoothly in the absence of any catalyst, but the reaction time is longer (3-4 h). All the N-trimethylsilylpyrazole derivatives are colorless oily liquids readily hydrolyzable in air to form the corresponding pyrazole derivatives and hexamethyldisiloxane. Unlike compounds compound 6 crystallizes when allowed to stand or on rapid cooling to 10-12 °C. In the air compound 6 crystallizes considerably more slowly.

4-Trimethylsilylpyrazole (1), 3(5)-trimethylsilylpyrazole (2) and 3(5),4-bis(trimethylsilyl)pyrazole (3). Compounds 1–3 were prepared by a described technique.^{3,4}

1,3-Bis(trimethylsilyl)pyrazole (4). (a) A mixture of 6.5 g (0.046 mol) of 3(5)-trimethylsilylpyrazole (2), 4.5 g (0.028 mol) of hexamethyldisilazane and 0.01 g of saccharin was refluxed for 1 h. After vacuum distillation of the reaction mixture, 9.2 g of a colorless oily liquid was isolated in 96% yield.

(b) A mixture of 1.4 g (0.01 mol) of 3(5)-trimethylsilylpyrazole (2) and 1.6 g (0.01 mol) of hexamethyldisilazane was refluxed for 4 h.

Found (%) Calculated (%) Compound Yield (%) B.p. (°C/mmHg) n_D^{25} \mathbf{C} Η N Si \mathbf{C} Η Si 4 96.2 47-48/1.5 1.4592 51.21 10.01 13.14 26.58 51.29 9.48 18.18 26.43 98.5 64 - 65/1.55 1.4640 51.20 9.70 13.35 25.99 51.29 9.48 18.18 26.43 6 95.7 80 - 81/1.01.4710 50.81 10.16 10.15 29.21 50.63 9.91 9.84 29.60 7 66.7 50-51/5.0 1.4635 54.37 9.01 17.95 18.16 54.49 9.15 18.16 18.32 8.94 8 85.5 37 - 38/1.51.4620 54.28 18.01 18.21 54.49 9.15 18.16 18.32

Table 4. Analytical characteristics of C- and N-trimethylsilylpyrazole derivatives

After vacuum distillation of the reaction mixture, 2.1 g of 1,3-bis(trimethylsilyl)pyrazole was obtained (Table 4).

1,4-Bis(trimethylsilyl)pyrazole (5) and 1,3,4-tris(trimethylsilyl)pyrazole (6). Compounds 5 and 6 were prepared in an analogous manner, i.e. by silvlation of 4-trimethylsilylpyrazole and 3(5),4bis(trimethylsilyl)pyrazole, respectively (see Table 4).

3(5)-Methyl-1-trimethylsilylpyrazole (8). (a) A mixture of 9.5 g of 3-methylpyrazole and 10 g of hexamethyldisilazane was refluxed in an apparatus connected with a calcium chloride tube for 8 h. Distillation of the reaction mixture gave 15 g (ca. 84%) of the target product, a colorless oily liquid readily hydrolyzable with air moisture.

(b) Into a mixture of 10.4 g (0.1 mol) of the anhydrous sodium salt of 3-methylpyrazole (from 0.8 g of 3-methylpyrazole and 12.1 g of 33% aqueous NaOH solution) in 50 ml of anhydrous CH₃CN, 11.0 g of Me₃SiCl were dropped with stirring and cooling and the mixture was refluxed for 1 h. After separation of the NaCl residue the solvent and excess Me₃SiCl were distilled from the solution. After distillation of the residue under vacuum 13.2 g (85.5%) of 3(5)-methyl-1-trimethylsilylpyrazole (8) were isolated as a colorless oily liquid (Table

1-Trimethylsilylpyrazole (9). This was synthesized by a published procedure.6

4-Methyl-1-trimethylsilylpyrazole (7). Compound 7 was prepared analogously to compound 9 (see Table 4).

3(5)-Methylpyrazole (10). This is a commercial product.

4-Methylpyrazole (11). Compound 11 was prepared by a published

N-Trimethylsilyl-1,2,3-triazole (12) and (13). A mixture of 6.9 g (0.1 mol) of 1,2,3-triazole and 10 g (0.06 mol) of hexamethyldisilazane was refluxed for 6 h. After vacuum distillation of the reaction mixture, 11.5 g (81.4%) of a fraction of b.p. 33-35 °C/12 mmHg (n_D^{25} 1.4520) was obtained as a colorless oily liquid containing 1- and 2-trimethylsilyl-1,2,3-triazoles in a 1:5 ratio.

REFERENCES

1. L. I. Larina, M. S. Sorokin, A. I. Albanov and V. A. Lopyrev, XI International Symposium on Organosilicon Chemistry, Montpellier, France, September 1-6, Abstract PC 25 (1996).

- 2. V. A. Lopyrev, L. I. Larina, A. I. Albanov, M. S. Sorokin and G. V. Dolgushin, Izv. Akad. Nauk, Ser. Khim. 3011 (1996).
- L. Birkofer and M. Franz, Chem. Ber. 105, 1759 (1972).
- L. Birkofer and M. Franz, Chem. Ber. 100, 2681 (1967).
- 5. J. C. Bottaro, R. J. Schmitt, C. D. Bedford, R. Gilardi and C. George, J. Org. Chem. 55, 1916 (1990).
- 6. D. H. O'Brien and C. P. Hrung, J. Organomet. Chem. 27, 185 (1971)
- 7. V. N. Torocheshnikov, N. M. Sergeyev, N. A. Victorov, G. S. Goldin, V. G. Poddubny and A. N. Koltsova, J. Organomet. Chem. 70, 347 (1974).
- 8. M. Begtrup and P. Larsen, Acta Chem. Scand. 44, 1050 (1990).
- 9. F. Effenberger and A. Krebs, J. Org. Chem. 49, 4687 (1984).
- 10. D. Spinelli and P. Zanirato, J. Chem. Soc. Perkin Trans. 2 1129 (1993).
- 11. J. Elguero, C. Marzin, A. R. Katritzky and P. Linda, The Tautomerism of Heterocycles. Academic Press, New York (1976).
- 12. M. Begtrup, G. Boyer, P. Cabildo, C. Cativiela, R. M. Claramunt, J. Elguero, J. I. Garcia, C. Toiron and P. Vedso, Magn. Reson. Chem. 31, 107 (1993).
- 13. C. Lopez, R. M. Claramunt, S. Trofimenko and J. Elguero, Can. J. Chem. 71, 678 (1993).
- 14. J. Elguero, F. H. Cano, C. Foces-Foces, A. L. Llamas-Saiz, H.-H. Limbach, F. Aguilar-Parrilla, R. M. Claramunt and C. Lopez, J. Heterocycl. Chem. 31, 695 (1994).
- 15. M. Perrin, A. Thozet, P. Cabildo, R. M. Claramunt, E. Valenti and J. Elguero, Can. J. Chem. 71, 1443 (1993).
- 16. M. T. Chenon, C. Coupry, D. M. Grant and R. J. Pugmire, J. Org. Chem. 42, 659 (1977).
- 17. I. D. Kalikhman, V. A. Lopyrev, E. F. Shibanova, V. A. Pestunovich and M. G. Voronkov, Izv. Akad. Nauk, Ser. Khim. 2390 (1977)
- 18. A. N. Nesmeyanov, E. B. Zavelovich, V. N. Babin, N. S. Kochetkova and E. I. Fedin, Tetrahedron 31, 1463 (1975)
- 19. R. M. Claramunt, J. Elguero, C. Marzin and J. Seite, An. Quim. 75, 701 (1979).
- 20. J. Catalan, M. Sanchez-Cabezudo, J. L. G. de Paz, J. Elguero, R. W. Taft and F. Anvia, J. Comput. Chem. 10, 426 (1989).
- 21. A. I. Vokin, T. N. Komarova, L. I. Larina and V. A. Lopyrev, Izv. Akad. Nauk. Ser. Khim. 310 (1997).
- 22. A. Fruchier, V. Pellergrin, R. M. Claramunt and J. Elguero, Org.
- Magn. Reson. 22, 473 (1984).
- 23. H. Dorn, J. Prakt. Chem. 315, 382 (1973).
- 24. L. Birkofer and P. Wegner, Chem. Ber. 99, 2512 (1966).
- 25. W. Peterson, B. Arkles and S. Washburne, J. Organomet. Chem. 121, 2851 (1976).
- 26. M. Oki, Application of Dynamic NMR Spectroscopy to Organic Chemistry, p. 5. VCH, Deefield Beach, FL (1985)
- 27. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).
- 28. V. T. Klimenko, T. V. Protopopova and A. P. Skoldinov, Zh. Obshch. Khim. 31, 170 (1961).